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Motivation for comparing AC vs DC

* How does it change from AC to DC
=  Power balancing in AC systems is achieved by opening and closing valves.

= Power imbalances are can be temporarily sustained by the stored kinetic energy in
generator inertia.

= Power flow is not closely coupled to AC voltage magnitude.

= Power balancing is distributed amongst multiple generators from a common control
input of grid frequency for AC systems.



Bz | Are DC networks possible?

* Are large DC grids even possible from a control and stability viewpoint?
 What are the principles for designing control systems for DC systems?

* Are DC systems readily expandable?
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. Modelling — What is the level of detail required?

Types of Stability — What does stable operation look like?
Control — How are system inputs controlled to get the desired output?

Stability Analysis — What tools are available to understand system interactions?
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Transmission Line Modelling

Energisation of 4,400 km HVDC cable.
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\ Transmission Line Modelling

Energisation of 4,400 km HVDC cable.

Cable Voltage
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The time for the transmission line to
settle is dependent on

* Length of transmission line
* Propagation speed

* Attenuation



Input variables, e.g. current injection

\

x=f(x,w,u)
0=g(xw,u) State model S

y = h(x,w,u)

\ Output variables, e.g. terminal voltage

2 | Modelling Differences between AC and DC 45
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Consider a simple
two variable
dynamic system

X1 = f1(x1,x2)
Xy = fo(x1,%7)
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AC Systems — Two Input and Two Outputs
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() | Synchronisation - AC Systems Only

Belts are not perfectly
rigid and can break

Do AC systems require synchronisation? Yes!

Can inverters fix speed. Yes! Advisable?



F)zz | Control of AC Systems with Synchronous 45
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First Select Static Targets

Option Relationship

Uncontrolled — Load Characteristics
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.| Approaches to Controlling DC Converters 415
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How secure is each configuration to contingencies in the electrical and communications Qé

networks? <5b
Autonomous Centralised Decentralised qé




Bz | Stability Analysis

Small Signal Stability — Lyapunov’s Indirect Method

Time Domain Simulation

Impedance Analysis — Nyquist Stability Criteria + Related Methods

Passivity Analysis



Y | Passivity Analysis ¢ls

Passivity = Resistive Component = Energy Dissipation = Stable db
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Formal definition of Input-Output Stability 4%
passivity for a state model Formal Proot , 49

with input and output. Stable for constant input qp




Electricity Network

Electrical Diagram
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AC versus DC Summary

* How does it change from AC to DC
=  Power balancing in AC systems is achieved by opening and closing valves. Not necessary
for DC systems, and converters add further flexibility.

= Power imbalances are can be temporarily sustained by the stored kinetic energy in
generator inertia. DC systems require significant energy stores for contingencies.

= Power flow is not closely coupled to AC voltage magnitude. Power transfer in DC system
is created by a DC voltage difference.

= Power balancing is distributed amongst multiple generators from a common control
input of grid frequency for AC systems. Coordinated response of converters in DC
systems relies on local DC voltage measurement and communication.
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 DC and AC systems have a lot of differences
« Common objective, power transfer with voltage close to nominal

* There are promising tools for analysis
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Closed loop transfer function

D \ Poles of Simple Feedback System

Power injected

Power ordered C 1
— >
T3s +1 Tus+ 1

1+ 42(1 +vy)
T2+ y) (”]1_ (1+/1)2>

_n@+n( [ 4 +y)
T o0+ ) (1+ 1)2

into network AB
— C = Closed Loop DC gain
1+A4
T
1 =-2 Yy = AB
(51

Linear approximation of the square
root is used:

X
V1+xz1+§



