Architecture of the Future Low-Carbon, Resilient, Electrical Power System Future Architecture of the Network (FAN) – Te Whatunga Hiko Workstream 3 –Summer Project

Project title: Data-Driven Control of Power Electronic Converters

Relevant Workstream(s): WS 3

This project is focussed on Workstream 3 (WS3).

To enable proliferation of DC grids within AC grids by addressing technologies and control mechanisms for different forms of power electronic converters.

Project Description

One of the main issues in designing control mechanisms for power electronic converters is that the converter must operate in a wide range of conditions, e.g. different grid strengths, load, etc. One potential method to address this is data-driven control, where the converter uses data it collects to adapt to the conditions by re-calculating its control gains automatically.

The student will build on the work of two previous data-driven control summer projects in 2023/2024 and design a data-driven controller for other converter topologies (e.g. DC-DC dual-active-bridge converters). If time permits, comparisons between different approaches will be performed along with investigation of the coordination of multiple data-driven power converters in a power system.

Specific requirements:

- BE(Hons) Electrical and Electronic Engineering (EEE) student- Third (second Pro) or Fourth (Third Pro) year.
- Good knowledge of power systems and power electronics
- Experience with programming languages, e.g. MATLAB
- Familiarity with power system simulation tools e.g. Simulink Electrical, PSCAD/EMTDC
- Excellent academic track record
- High proficiency in written and spoken English
- Enthusiastic applicants (any nationality) that want to make a positive impact in the world and can work in a collaborative environment.

Potential Supervisor(s) –Jeremy Watson, Tek Lie

Based in: University of Canterbury